
Design and Implementation of a Context-Sensitive,
Flow-Sensitive Activity Analysis Algorithm for
Automatic Differentiation

Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
jaewook,malusare,hovland@mcs.anl.gov

Summary. Automatic differentiation (AD) has been expanding its role in scientific comput-
ing. While several AD tools have been actively developed and used, a wide range of prob-
lems remain to be solved. Activity analysis allows AD tools to generate derivative code for
fewer variables, leading to a faster run time of the output code. This paper describes the first
context-sensitive, flow-sensitive (CSFS) activity analysis, which is developed by extending
an existing context-sensitive, flow-insensitive (CSFI) activity analysis. Our experiments with
eight benchmarks including the MIT General Circulation Model show that the new CSFS ac-
tivity analysis is more than 26 times slower but reduces 8 and 1 overestimations for two out of
the eight benchmarks compared with the existing CSFI activity analysis implementation.

Key words: automatic differentiation, activity analysis

1 Introduction

Automatic differentiation (AD) is a promising technique in scientific computing because it
provides many benefits such as accuracy of the differentiated code and the fast speed of differ-
entiation. Interest in AD has led to the development of several AD tools including some com-
mercial software. AD tools take as input a mathematical function described in a programming
language and generate as output a mathematical derivative of the input function. Sometimes,
however, users are interested in a derivative of an input function for a subset of the output
variables with respect to a subset of the input variables. Those input and output variables of
interest are called independent and dependent, respectively, and are explicitly specified by
users. When the independent and dependent variable sets are relatively small compared to
the input and output variable sets of the function, the derivative code can run much faster by
not executing the derivative code for the intermediate variables that are not contributing to
the desired derivative values. Such variables are said to be passive (or inactive). The other
variables whose derivatives must be computed are said to be active, and the analysis that iden-
tifies active variables is called activity analysis. Following [6], we say a variable is varied
if it (transitively) depends on any independent variable and useful if any dependent variable
(transitively) depends on it; we say it is active if it is both varied and useful. Activity analysis
is flow-sensitive if it takes into account the order of statements and the control flow structure

2 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

of the given procedure, and context-sensitive if it is an interprocedural analysis that considers
only realizable call-return paths.

In our previous work, we developed a context-sensitive, flow-insentive activity analysis
algorithm, called variable dependence graph activity analysis (VDGAA), based on variable
dependence graphs [10]. This algorithm is very fast and generates high-quality output; in
other words, the set of active variables determined by the algorithm is close to the set of true
active variables. However, we have observed a few cases where the algorithm overestimated
passive variables as active because of its flow insensitivity. These cases suggest that the over-
estimations could be eliminated if we developed an algorithm that is both context-sensitive
and flow-sensitive (CSFS). Such algorithm would also be useful in evaluating overestimations
of VDGAA.

In this paper, we describe a CSFS activity analysis algorithm, which we have developed
by extending VDGAA. To incorporate flow sensitivity, we use definitions and uses of variables
obtained from UD-chains and DU-chains [1]. The graph we build for the new CSFS activity
analysis is called def-use graph (DUG) because each node represents a definition now and
each edge represents the use of the definition at the sink of the edge. Named after the graph,
the new CSFS activity analysis algorithm is called DUGAA. The subsequent two sweeps over
the graph are more or less identical to those in VDGAA. In a forward sweep representing the
varied analysis, all nodes reachable from the independent variable nodes are colored red. In the
following backward sweep representing the useful analysis, all red nodes reachable from any
dependent variable node are colored blue. The variables of the blue nodes are also determined
as active.

Our contributions in this paper are as follows:

• The first CSFS activity analysis algorithm
• Implementation and experimental evaluation of the new algorithm on eight benchmarks

In the next section, we describe the existing CSFI activity analysis VDGAA and use exam-
ples to motivate our research. In Section 3, the new CSFS activity analysis algorithm DUGAA
is described. In Section 4, we present our implementation and experimental results. In Sec-
tion 5, we discuss related research. We conclude in Section 6.

2 Background

We motivate our research by explaining the existing CSFI activity analysis algorithm and its
flow insensitivity. We then discuss how flow sensitivity can be introduced to make a context-
sensitive, flow-sensitive algorithm.

VDGAA starts by building a variable dependence graph, where nodes represent variables
and edges represent dependence between them [8]. Since a variable is represented by a single
node in the graph, all definitions and uses of a variable are represented by the edges coming
in and out the node. The order information among the definitions and uses cannot be retrieved
from the graph. By building this graph, we assume that all definitions of a variable reach all
uses of the variable. In terms of activity, this assumption results in more active variables than
the true active ones. The two code examples in Figure 1 show the overestimation caused by
flow insensitivity of VDGAA. In Figure 1(a), all five variables are active because there is a
value flow path from x to y that includes all five variables, x → f → a → g → y, while no
variables are active in (b) because no value flow paths exist from x to y.

CSFS Activity Analysis 3

subroutine head(x,y)
double precision :: x,y

c$openad INDEPENDENT(x)
call foo(x, y)

c$openad DEPENDENT(y)
end subroutine
subroutine foo(f,g)

double precision :: f,g,a
a = f
g = a

end subroutine

(a) All variables are active.

subroutine head(x,y)
double precision :: x,y

c$openad INDEPENDENT(x)
call foo(x, y)

c$openad DEPENDENT(y)
end subroutine
subroutine foo(f,g)

double precision :: f,g,a
g = a
a = f

end subroutine

(b) No variables are active.

Fig. 1. Example showing the flow insensitivity of the existing CSFI algorithm.

Figure 2(a) shows a variable dependence graph generated by VDGAA, which produces
the same graph for both codes in Figure 1. Nodes are connected with directed edges repre-
senting the direction of value flow. The edge labels show the edge types, which can be CALL,
RETURN, FLOW, or PARAM. A pair of CALL and RETURN edges is generated for each
pair of actual and formal parameters if called by reference. FLOW edges are generated for
assignment statements, one for each pair of a used variable and a defined variable in the state-
ment. PARAM edges summarize the value flows between formal parameters of procedures
such that there is a PARAM edge from a formal parameter to another if there is a value flow
path between them in the same direction. In Figure 2(a), two pairs of CALL and RETURN
edges show the value flow between actual and formal parameters for the two actual parameters
in the call to foo. The two FLOW edges are generated for the two assignment statements in
procedure foo. The PARAM edge from node 23 to node 25 summarizes the value flow path
f → a → g. Although not useful in this example, PARAM edges allow all other types of
edges to be navigated only once during the subsequent varied and useful analyses. The num-
bers in the edge labels show the address of the call expression for CALL and RETURN edges,
which are used to allow color propagations only through realizable control paths. Because of
its flow insensitivity, the same graph is generated from the two different codes in Figure 1, and
hence the same activity output. Although we know this behavior of VDGAA, determining the
amount of overestimation is not easy.

We developed a context-sensitive, flow-sensitive activity analysis algorithm to achieve
two goals. First, we wish to evaluate how well VDGAA performs in terms of both the analysis
run time and the number of active variables. Second, in some cases, identifying several more
inactive variables compared with VDGAA might be desirable, even at the cost of the longer
analysis time. The key idea in the new CSFS algorithm is to use variable definitions obtained
from UD/DU-chains [1] to represent the nodes in the graph. To reflect this change, we call the
graph of definitions and uses def-use graph, or DUG, and call the new CSFS activity analysis
DUGAA. DUGAA combines flow sensitivity of UD/DU-chains with the context sensitivity of
VDGAA. Since a statement may define more than one variable, 1 as a node key we use a pair
comprising a statement and a variable. Figures 2(b) and (c) show the two def-use graphs for
the two codes in Figures 1(a) and (b). Unlike the VDG in Figure 2(a), the node labels in DUGs
have a statement address concatenated at the end of the variable name and a symbol @. DUG
is similar to system dependence graph of [9]. Among other differences, DUG does not have
predicate nodes and control edges. Instead flow sensitivity is supported by using the result of

1 as in call-by-reference procedure calls of Fortran 77

4 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

head_(22)
x

foo_(23)
f

CALL
(1093650052)

RETURN
(1093650052)

foo_(25)
g

PARAM foo_(26)
a

FLOW

head_(24)
y

CALL
(1093650052)

RETURN
(1093650052)

FLOW

(a) The VDG for both
Figure 1(a) and (b).

foo_(30)
f@1

foo_(35)
a@1083753612

foo_(36)
g@1083753684

foo_(34)
g@2

head_(29)
x@0

foo_(31)
f@2

head_(32)
y@0

foo_(33)
g@1

RETURN
(1083754540)

RETURN
(1083754540)

CALL
(1083754540)

CALL
(1083754540) FLOW

PARAM FLOW

FLOW

(b) The DUG for Figure 1(a).

head_(29)
x@0

foo_(30)
f@1

CALL
(1083754540)

foo_(36)
aa@1083753684

FLOW

foo_(31)
f@2

RETURN
(1083754540)

head_(32)
y@0

foo_(33)
g@1

CALL
(1083754540)

foo_(34)
g@2

RETURN
(1083754540)

foo_(35)
g@1083753612

FLOW

(c) The DUG for
Figure 1(b).

Fig. 2. Def-use graphs generated by the new CSFS algorithm.

UD/DU-chains. We use three special statement addresses: 0 for all definitions of independent
and dependent variables, and 1 and 2 in the incoming and outgoing formal parameter nodes,
respectively. Since the DUG in Figure 2(c) has no path from the independent variable node
(for x) to the dependent variable node (for y), no variables are active in the output produced
by DUGAA for the code in Figure 1(b).

3 Algorithm

In this section, we describe the new activity analysis algorithm DUGAA. Similar to VDGAA,
the DUGAA algorithm consists of three major steps:

1. Build a def-use graph.
2. Propagate red color forward from the independent variable nodes to find the varied nodes.
3. Propagate blue color backward from the dependent variable nodes to find the useful

nodes.

A def-use graph is a tuple (V, E), where a node N ∈ V represents a definition of a variable in a
program and an edge (n1, n2) ∈ E represents a value flow from n1 to n2. Since all definitions
of a variable are mapped to their own nodes, flow sensitivity is preserved in DUG.

Figure 3 shows an algorithm to build a DUG. For each statement in a given program,
we generate a FLOW edge from each use for each source variable to the definition of the
statement. If the statement contains procedure calls, we also add CALL and RETURN edges.
For global variables, we connect definitions after we process all statements in the program.
PARAM edges are inserted between formal parameter nodes for each procedure if there is a
value flow path between them. Below, each of the major component algorithms is described
in detail.

Flow sensitivity is supported by using variable definitions as node keys obtained from
UD/DU-chains. To represent definitions, we use the addresses of statements where variables
are defined. However, statement addresses alone are not enough to identify a single definition
of a variable since a statement may define multiple variables as in function calls passing actual

CSFS Activity Analysis 5

Algorithm Build-DUG(program PROG)
UDDUChain ← build UD/DU-chains from PROG
DUG ← new Graph
DepMatrix ← new Matrix
for each procedure Proc ∈ CallGraph(PROG) in reverse postorder
for each statement Stmt ∈ Proc

// insert edges for the destination operand
for each (Src,Dst) pair ∈ Stmt where Src and Dst are variables

InsertUseDefEdge(Src, Dst, Stmt, Proc)
// insert edges for the call sites in the statement
for each call site Call to Callee ∈ Stmt
for each (ActualVar,FormalVar) pair ∈ Call

InsertCallRetEdges(ActualVar, FormalVar, Stmt, Proc, Callee, Call)
connectGlobals()
makeParamEdges()

Fig. 3. Algorithm: Build a def-use graph from the given program.

Algorithm InsertUseDefEdge(variable Src, \
variable Dst, stmt Stmt, procedure Proc)
DefNode ← node(Stmt, Dst)
// edges from uses to the def
for each reaching definition Rd for Src

// for an upward exposed use
if (Rd is an upward exposed use)
if (Src is a formal parameter)

Rd ← stmt(1)
else
if (Src is a global variable)

GlobalUpUse[Src].insert(aRecord(\
Dst, Stmt, Proc, callExp(0), Proc))

continue
DUG.addEdge(node(Rd, Src), DefNode, \
FLOW, Proc, Proc, Proc, callExp(0))

// edges for downward exposed definitions
if (Stmt has a downward exposed def)
if (Dst is a formal parameter)

DUG.addEdge(DefNode, node(stmt(2), \
Dst), FLOW, Proc, Proc, Proc, callExp(0))

else if (Dst is a global variable)
GlobalDnDef[Dst].insert(aRecord(Dst, Stmt, \
Proc, callExp(0), Proc))

Algorithm InsertCallRetEdge(variable Actual, \
variable Formal, stmt Stmt, procedure Proc, \
procedure Callee, callExp Call)
// CALL edges from actuals to the formal
for each reaching definition Rd for Actual
if (Rd is an upward exposed use)
if (Actual is a formal parameter)

Rd ← stmt(1)
else if (Actual is a global variable)

GlobalUpUse[Actual].insert(aRecord(\
Formal, stmt(1), Callee, Call, Proc))

continue
DUG.addEdge(node(Rd, Actual), node(stmt(1), \
Formal), CALL, Proc, Callee, Proc, Call)

// RETURN edges for call-by-reference parameters
if (Actual is not passed by reference) return
DUG.addEdge(node(stmt(2), Formal), node(Stmt, \
Actual), RETURN, Callee, Proc, Proc, Call)
// edges for downward exposed definitions of Actual
if (Stmt has a downward exposed def) // DU-chain
if (Actual is a formal parameter)

DUG.addEdge(node(Stmt, Actual), node(stmt(2), \
Actual), FLOW, Proc, Proc, Proc, callExp(0))

else if (Actual is a global variable)
GlobalDnDef[Actual].insert(aRecord(Actual, \
Stmt, Proc, callExp(0), Proc))

Fig. 4. Algorithm: Insert edges.

parameters by reference. Hence, we use both statement address and variable symbol as a node
key. Although a variable can be defined multiple times within a statement, we aggregate all
definitions of a vairable within a statement into a single node. We generate up to two nodes
for each formal parameter: one for the incoming value along CALL edge and the other for the
outgoing value along RETURN edge. We reserve two special statement addresses for the two
formal parameter nodes: 1 for incoming nodes and 2 for outgoing nodes. In addition, we use
a special statement address 0 for all definitions of independent and dependent variable. Be-
cause of these changes, inserting edges in DUG for a pair of source and destination variables
has more to do than in VDG. In DUG, multiple edges may need to be generated for a source
variable if multiple definitions reach the use. In addition, upward exposed uses and downward
exposed definitions must be connected properly to formal parameter nodes and global variable
nodes. Figure 4 shows two algorithms to insert edges. InsertUseDefEdge inserts edges for
a pair of a source variable (Src) and a destination variable (Dst) in an assignment (Stmt).

6 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

UD-chains are used to find all reaching definitions for Src and to connect them to the defini-
tion of Dst. If the reaching definition is an upward exposed use, an edge is connected from an
incoming node if Src is a formal parameter, or if Src is a global variable the corresponding
definition (Dst and Stmt) is stored in GlobalUpUse for Src together with other information.
If the definition of Dst is downward exposed, we connect an edge from the definition node to
the outgoing formal parameter node if Dst is a formal parameter, or we store the definition in-
formation in GlobalDnDef for Dst. Later, we make connections from all downward exposed
definitions to all upward exposed uses for each global variable. With these connections, we
conservatively assume that all downward exposed definitions of a global variable may reach
all upward exposed uses of the same variable. InsertCallRetEdge inserts edges between a
pair of actual and formal parameter variables. CALL edges are inserted from each reaching
definition of the actual parameter to the incoming node for the formal parameter. If the actual
parameter is passed by reference, a RETURN edge is also inserted from the outgoing node for
the formal parameter to the definition node for the actual parameter at Stmt. If this definition
of the actual parameter is downward exposed, it is similarly processed for formal parameters
and global variables as in InsertUseDefEdge.

Algorithm makeParamEdges()
for each procedure Proc ∈ CallGraph(PROG) in postorder
for each node N1 ∈ ProcNodes[Proc]
for each node N2 ∈ ProcNodes[Proc]
if (N1 == N2) continue

if (DepMatrix[Proc][N1][N2]) continue

if (!DUG.hasOutgoingPathThruGlobal(N1)) continue

if (!DUG.hasIncomingPathThruGlobal(N2)) continue

if (DUG.hasPath(N1, N2))
DepMatrix[Proc][N1][N2] = true

transitiveClosure(Proc)
for each formal parameter Formal1 ∈ Proc
for each formal parameter Formal2 ∈ Proc

FNode1 ← node(stmt(1), Formal1)
FNode2 ← node(stmt(2), Formal2)
if (!DepMatrix[Proc][FNode1][FNode2]) continue

DUG.addEdge(FNode1, FNode2, PARAM, Proc, Proc, Proc, callExp(0))
for each call site Call ∈ Callsites[Proc]

Caller ← CallsiteToProc[Call]
for each node Actual2 ∈ FormalToActualSet[Call][FNode2]
if (Actual2.Symbol is not called by reference) continue

for each node Actual1 ∈ FormalToActualSet[Call][FNode1]
DepMatrix[Caller][Actual1][Actual2] ← true

Fig. 5. Algorithm: Make PARAM edges.

PARAM edges summarize value flow among formal parameters to allow multiple traver-
sals across formal parameter nodes when there are multiple call sites for the same procedure.
We add a PARAM edge from an incoming formal parameter node f1 to an outgoing formal
parameter node f2 whenever there is a value flow path from f1 to f2. Figure 5 shows the al-
gorithm that inserts PARAM edges. Whenever a FLOW edge is created, we set an element
of the procedure’s dependence matrix to true. After building a DUG for statements and con-
necting global variable nodes, for all pairs of formal parameters we check whether there is a
value flow path between them going through other procedures via two global variables. This
checking is necessary because we perform transitive closure only for those definitions used in
each procedure. Thus, if a value flows out of the procedure through a global variable and flows

CSFS Activity Analysis 7

in through another global variable, the path will not show in the result of transitive closure.
Checking for such a path between two nodes requires traversing the entire graph. Hence, this
test is performed only when the incoming formal node has a path to other procedures and
the outgoing formal node has a path from other procedures through global variable nodes.
Next, we apply Floyd-Warshall’s transitive closure algorithm [3] to find connectivity between
all pairs of formal parameter nodes. A PARAM edge is added whenever there is a path from
one formal node to another. We modified the original algorithm to exploit the sparcity of the
matrix.

The varied and useful analyses are forward color propagation (with red) from the indepen-
dent variable nodes and backward color propagation (with blue) from the dependent variable
nodes, respectively. The propagation algorithms are described in our previous work [10] in
more detail but we briefly summarize them below. To support context sensitivity, we maintain
a call stack while we navigate the graph. When a CALL edge is followed, we push the call site
address of the CALL edge onto the stack, and we pop the stack top when the corresponding
RETURN edge is followed or the propagation retreats back along the CALL edge. Before a
RETURN edge is followed, we compare the current top of the stack with the call site address
of the RETURN edge. The edge is followed only when they match. One exception is when
the top of the stack keeps a special value called VTG (for Value Through Globals), in which
case we allow any RETURN edges to be followed. Even when the stack top is VTG, however,
CALL edges can be followed, maintaining the stack normally. Note that we still follow the
realizable value flow paths even when VTG is used. The useful analysis is similar to the varied
analysis except that it traverses the DUG backward starting from the dependent variable nodes
and we do not visit a node unless it is already marked as varied (colored red). When a node is
marked as useful, we mark the variable active as well.

4 Experiment

We implemented the algorithm described in Section 3 on OpenAnalysis [11] and linked it into
an AD tool called OpenAD/F [12], which is a source-to-source translator for Fortran. Figure 6
shows the experimental flow. The generated AD tool was run on a machine with a 1.86 GHz
Pentium M processor, 2 MB L2 cache, and 1 GB DRAM memory.

Open64
Fortran 90
Front end

VDGAA

DUGAA

AD
Transformation

Open64
Fortran 90
Unparser

Input
(Fortran)

Output
(Fortran)

OpenAnalysis

Fig. 6. OpenAD automatic differentiation tool.

To evaluate our implementation, we used the set of eight benchmarks used in our previous
work [10]. The version of the MIT General Circulation Model used for this experiment is two
times larger; 2 but all other benchmarks are identical.
2 27,376 lines

8 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

MITgcm LU CG newton adiabatic msa swirl c2
Benchmarks

0

50

100

150

Sl
ow

do
w

n
of

 D
U

G
A

A
 w

ith
 re

sp
ec

t t
o

V
D

G
A

A

Fig. 7. Slowdown in analysis run time: DUGAA with respect to VDGAA.

Figure 7 shows the slowdowns of DUGAA with respect to VDGAA, which are computed
by dividing the DUGAA run times by the VDGAA run times. For newton and c2, the VDGAA
run times were so small that the measurements were zero. For the other six benchmarks,
the slowdowns range between 26 and 136. The benchmarks are ordered in decreasing order
of program sizes, but the correlation with the slowdowns is not apparent. The run time for
DUGAA on MITgcm is 53.01 seconds, while it is 1.71 seconds for VDGAA. Figure 8 show
the component run times for both DUGAA and VDGAA on MITgcm. Since VDGAA does
not use UD/DU-chains, the run time for computing UD/DU-chains is zero. However, it take
80.59% of the total run time for DUGAA. Another component worthy of note is transitive
closure, which summarizes connectivity by adding PARAM edges between formal parameters.
The transitive closure time can be considered as part of graph building but we separated it from
the graph building time because it is expected to take a large portion. With respect to transitive
closure times, the slowdown factor was 9.69. The graph navigation time for coloring was very
small for both algorithms. The slower speed of DUGAA was expected because it would have
much more nodes than VDGAA; The DUG for MITgcm has 13,756 nodes while the VDG has
5,643 nodes.

Our next interest is the accuracy of the produced outputs. Except for MITgcm and c2, the
active variables determined by the two algorithms match exactly. Even for MITgcm and c2,
the number of overestimations by VDGAA over DUGAA is not significant; 8 out of 925 for
MITgcm and 1 out of 6 for c2. This result suggests two possibilities: First, as expected, the
number of overestimations from flow insensitivity is not significant. Second, the flow sensitiv-
ity of DUGAA can be improved by having more precise UD/DU-chains. For example, actual
parameters passed by reference are conservatively assumed to be nonscalar type. Hence, the
definition of the corresponding formal parameters does not kill the definitions coming from
above. Third, aside from flow sensitivity, other types of overestimations can be made in both
algorithms because they share important features such as the graph navigation algorithm. One
type of overestimation filtered by DUGAA is activating formal parameters when they have no
edges leading other active variables except to the corresponding actual parameters. Currently,
VDGAA filters out the cases when the formal parameters do not have any outgoing edges than
the RETURN edge going back to the actual parameter where the color is propagated from, but
it fails to do so when there are other outgoing edges to other passive variables. This type of

CSFS Activity Analysis 9

UD-DU
Chains

Graph Transitive
closure

Coloring
(varied, useful)

Time components

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f t
he

 to
ta

l r
un

 ti
m

e
(%

)

VDGAA
DUGAA

Fig. 8. Analysis run-time breakdown on MITgcm: DUGAA vs. VDGAA.

overestimation is filtered effectively by DUGAA by separating formal parameter nodes into
two: an incoming node for a value from the corresponding actual parameter and an outgo-
ing node to the actual parameter3 for the same formal parameter. There is no path from the
incoming node to the outgoing node unless there is a value flow path between them.

The current implementations for both DUGAA and VDGAA can be improved in several
ways. First, if the nodes for the variables with integral types are not included in the graphs, we
expect that both the run time and the output quality can be improved. Second, more precise
analyses such as UD/DU-chains also can improve the accuracy of the output. Third, we might
be able to identify other types of overestimation different from those already identified, by
analyzing the behavior of the current implementations. Fourth, both VDGAA and DUGAA
currently support only Fortran 77. Supporting Fortran 90 and C is left as a future work.

5 Related Work

Activity analysis is described in literature [2, 5] and implemented in many AD tools [4, 7, 10].
Hascoet et al. have developed a flow-sensitive algorithm based on iterative dataflow anal-
ysis framework [6]. Fagan and Carle compared the static and dynamic activity analyses in
ADIFOR 3.0 [4]. Their static activity analysis is both context-sensitive and flow-insensitive.
Unlike other work, this paper describes the first context-sensitive, flow-sensitive activity anal-
ysis algorithm. Our approach of forward and backward coloring is similar to program slicing
and chopping [13, 9]. However, the goal in that paper is to identify all program elements that
might affect a variable at a program point.

6 Conclusion

Fast run time and high accuracy in the output are two important qualities for activity analysis.
In this paper, we described a new context-sensitive, flow-sensitive activity analysis algorithm,

3 if it is passed by reference

10 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

called DUGAA. In comparison with our previous context-sensitive, flow-insensitive (CSFI)
algorithm on eight benchmarks, DUGAA is more than 26 times slower but identifies 8 and 1
passive variables out of 925 and 6, determined active by the CSFI algorithm.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Di-
vision subprogram of the Office of Advanced Scientific Computing Research, Office of Sci-
ence, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

2. Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0:
Automatic differentiation of Fortran 77 programs. IEEE Computational Science & Engi-
neering, 3(3):18–32, 1996.

3. Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms. Mc-
Graw Hill, 2nd edition, 1990.

4. Mike Fagan and Alan Carle. Activity analysis in ADIFOR: Algorithms and effective-
ness. Technical Report TR04-21, Department of Computational and Applied Mathemat-
ics, Rice University, Houston, TX, November 2004.

5. Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

6. Laurent Hascoët, Uwe Naumann, and Valérie Pascual. “To be recorded” analysis in
reverse-mode automatic differentiation. Future Generation Computer Systems, 21(8),
2005.

7. Barbara Kreaseck, Luis Ramos, Scott Easterday, Michelle Strout, and Paul Hovland. Hy-
brid static/dynamic activity analysis. In Proceedings of the 3rd International Workshop on
Automatic Differentiation Tools and Applications (ADTA’04), Reading, England, 2006.

8. Arun Lakhotia. Rule-based approach to computing module cohesion. In Proceedings
of the 15th International Conference on Software Engineering, pages 35–44, Baltimore,
MD, 1993.

9. Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. In Proceedings
of the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, pages
41–52, 1995.

10. Jaewook Shin and Paul D. Hovland. Comparison of two activity analyses for automatic
differentiation: Context-sensitive flow-insensitive vs. context-insensitive flow-sensitive.
In ACM Symposium on Applied Computing, March 2007.

11. Michelle Mills Strout, John Mellor-Crummey, and Paul D. Hovland. Representation-
independent program analysis. In Proceedings of The Sixth ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, September 2005.

12. Jean Utke. OpenAD: Algorithm implementation user guide. Technical Memorandum
ANL/MCS–TM–274, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL, 2004. ftp://info.mcs.anl.gov/pub/tech reports/reports/TM-
274.pdf.

13. Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering, pages 439–449, 1981.

CSFS Activity Analysis 11

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Sci-
ence laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

